Aplastic Anaemia occurs when the body stops producing enough new blood cells. Some of these patients may respond to immunosuppressive therapy or bone marrow transplant, and some may progress to malignancy (myelodysplasia and/or acute myeloid leukaemia). Given this range of outcomes, any additional understanding may assist in clinical decision-making and may improve patient outcomes.
This study collects repeated small samples of blood from patients over time as part of a new tool to track accumulation of genomic mutations found in the blood. The technique takes advantage of the presence of cell free DNA in the blood, as a source for mutation testing, instead of traditional time-consuming and painful bone marrow collection. This new patient monitoring technique has already been used to track progress and potential mutation changes in 21 patients to date with over 100 tests performed. The potential impact of these studies on new techniques for monitoring Aplastic Anaemia patient progression may mean less painful, time-consuming bone marrow collection and more up-to-date disease information benefiting both clinician and patient.
2021-2023 (Grant-in-Aid): Curation of the DIAAMOND-based Aplastic Anaemia Biobank. Associate Professor Stephen Ting, Monash University. This project (the DIAAMOND biobank) is a sub-study of the DIAAMOND clinical trial and will collect, process ...
Read more2018-2023 (Grant-in-Aid): Using induced pluripotent stem cells to find causes and cures for bone marrow failure in children and young adults. Professor Andrew Elefanty, Murdoch Children’s Research Institute. Bone Marrow Failure Syndromes may be ...
Read more2016 – 2019 (Grant-in-Aid) Identification of microRNA biomarkers predictive of clinical outcomes in Aplastic Anaemia and Myelodysplastic Syndrome, Dr Lynette Chee, Melbourne Health. DNA is the genetic material which provides the information that ...
Read more2018-2020 (Grant in aid): Discovering new genes and mutations that cause failure of bone marrow neutrophil production. Professor Graham Lieschke, Australian Regenerative Medicine Institute/Monash University and The Royal Melbourne Hospital. ...
Read more