There are currently limited treatment options for patients with Bone Marrow Failure Syndromes. This study aims to identify known drugs that could be repurposed to treat Diamond Blackfan Anaemia (an inherited Bone Marrow Failure Syndrome) and/or myelodysplasia (a bone marrow failure condition associated with malignancy), both with limited current treatment options.
Libraries of 4169 and 3500 FDA approved compounds are available for this study. To identify new drugs that may potentially delay Diamond Blackfan Anaemia progression, library compounds that modify the p53 pathway have already been screened (the protein p53 was chosen as when activated it is thought to contribute to the red blood cell failure). A second screen for treatment of myelodysplasia, will select for drugs that impact myelodysplasia cell survival or differentiation in culture. Top hits from both screens will then be validated in patient bone marrow cultures before confirmation in preclinical models.
The overall goal of this research is to identify drugs already used clinically which could be potentially repurposed for the treatment of bone marrow failure syndrome caused by Diamond Blackfan Anaemia and/or myelodysplasia as a way to fast-track availability of new therapeutics to patients.
2019-2021 (Grant-in-Aid): Establishing an in vivo humanised mouse model for telomere related Bone Marrow Failure Syndromes. Professor Tracy Bryan, Children’s Medical Research Institute. Human genetic information is packaged into discrete bundles ...
Read more2019-2021 (Grant-in-Aid): Microenvironmental determinants of Aplastic Anaemia progression to MDS / AML. Associate Professor Rachel Koldej, ACRF Translational Research Laboratory, Melbourne Health. Aplastic Anaemia is a disorder where the body ...
Read more2017 – 2019 Fellowship / 2017 Grant-in-Aid, Towards targeted treatments for Fanconi Anaemia, Associate Professor Wayne Crismani, St Vincents Institute for Medical Research Fanconi Anaemia is an inherited disorder which can lead to bone ...
Read more2021-2024 (Grant-in-Aid): Precision gene editing for the treatment of Fanconi Anaemia. Dr Lorna McLeman, St Vincent’s Institute of Medical Research. Fanconi Anaemia is the most common cause of inherited bone marrow failure with a median onset of ...
Read more